Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.3 Exercises - Page 422: 57

Answer

$$y = \frac{{120}}{{1 + 14{e^{ - \left( {4/5} \right)t}}}}$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dt}} = \frac{{4y}}{5} - \frac{{{y^2}}}{{150}},{\text{ }}\left( {0,8} \right) \cr & {\text{Factoring}} \cr & \frac{{dy}}{{dt}} = \frac{4}{5}y\left( {1 - \frac{y}{{120}}} \right) \cr & {\text{The differential equation is in the form }}\frac{{dy}}{{dt}} = ky\left( {1 - \frac{y}{L}} \right) \cr & \underbrace {\frac{{dy}}{{dt}} = \frac{4}{5}y\left( {1 - \frac{y}{{120}}} \right)}_{\frac{{dy}}{{dt}} = ky\left( {1 - \frac{y}{L}} \right)} \to k = \frac{4}{5},{\text{ }}L = 120 \cr & {\text{The general solution is }}y = \frac{L}{{1 + b{e^{ - kt}}}}{\text{ }}\left( {{\text{Example 6, page 419}}} \right) \cr & {\text{Therefore, substituting }}k = \frac{4}{5}{\text{ and }}L = 120 \cr & \underbrace {y = \frac{L}{{1 + b{e^{ - kt}}}}}_ \downarrow \cr & y = \frac{{120}}{{1 + b{e^{ - \left( {4/5} \right)t}}}}{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Using the initial condition }}\left( {0,8} \right) \cr & 8 = \frac{{120}}{{1 + b{e^0}}} \cr & 8\left( {b + 1} \right) = 120 \cr & b = 14 \cr & {\text{Substituting }}b{\text{ into }}\left( {\bf{1}} \right) \cr & y = \frac{{120}}{{1 + 14{e^{ - \left( {4/5} \right)t}}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.