Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 6 - Differential Equations - 6.3 Exercises - Page 422: 55

Answer

$y=\frac{36}{1+8e^{-t}}$

Work Step by Step

Start by separating variables $\frac{dy}{dt} = y(1-\frac{y}{36})$ $ \frac{1}{y(1-\frac{y}{36})} dy= dt$ Integrate both sides $ \int\frac{1}{y(1-\frac{y}{36})} dy= \int dt$ before integrating the first part, we need to use partial fractions $\frac{1}{y(1-\frac{y}{36})} = \frac{A}{y} + \frac{B}{1-\frac{y}{36}}$ Solving for A and B gives $ A= 1, B=\frac{1}{36}$ Substituting A and B back into the Integration $\int \frac{1}{y} + \frac{1}{36(1-\frac{y}{36})} = \int dt$ Integrate both sides to get $\ln|y| - \ln|36-y| = t + C$ Now its time to isolate y multiply both sides by -1 $-\ln|y| + \ln|36-y| = -t - C$ $\ln|\frac{36-y}{y}| = -t-C$ Exponentiate both sides $|\frac{36-y}{y}| = e^{-t-C} $, Let $C=^+_-e^{-C}$ to get $ \frac{36-y}{y}= Ce^{-t}$ $ 36-y= yCe^{-t} $ $36= y(1+Ce^{-t})$ $\frac{36}{y}= (1+Ce^{-t} )$ $y=\frac{36}{1+Ce^{-t} }$ Now lets find the particular solution at (0,4) $4= \frac{36}{1+C}$ $1+C= 9$ $C=8$ Substitute back into the logistics function $y=\frac{36}{1+8e^{-t}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.