Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - Review Exercises - Page 394: 83

Answer

$\frac{2\pi}{3}+\sqrt 3-2$

Work Step by Step

$A=\int_{0}^{1}\frac{4-x}{\sqrt (4-x^{2})}dx$ $A=A1+A2$ $A1=\int_{0}^{1}\frac{4}{\sqrt (4-x^{2})}dx$ The denominator looks like $arcsin$. $\int\frac{du}{\sqrt (a^{2}-u^{2})}=arcsin(\frac{u}{a})+C$ $a=2$ $u=x$ $du=dx$ $A1= 4\int_{0}^{1}\frac{1}{\sqrt (4-x^{2})}dx$ $A1=4[arcsin(\frac{x}{2})]_{0}^{1}$ $A1=4[arcsin\frac{1}{2}-arcsin0]$ $A1=4[\frac{\pi}{6}-0]$ $A1=\frac{2\pi}{3}$ $A2=\int_{0}^{1}\frac{-x}{\sqrt (4-x^{2})}dx$ Since there is a $x$ in the numerator, u-substitution seems like it could work. let $u = 4-x^{2}$ $du=-2x$ $u(0)=4$ $u(1)=3$ $\frac{1}{2}du=-xdx$ $A2=\frac{1}{2}\int_{4}^{3}\frac{1}{\sqrt u}du$ $A2=\frac{1}{2}[2u^{\frac{1}{2}}]_{4}^{3}$ $A2=\frac{1}{2}[2\sqrt 3-2\sqrt 4]$ $A2=\sqrt 3-2$ $\frac{2\pi}{3}+\sqrt 3-2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.