Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.4 Exercises - Page 192: 8

Answer

$$ f(x)=\frac{2x^{2}}{3x^{2}+1} $$ the graph is concave upward: $$ (-\frac{1}{3}\lt x\lt \frac{1}{3}) $$ the graph is concave downward : $$ (-\infty \lt x \lt \frac{-1}{3}) , (\frac{1}{3} \lt x \lt \infty) $$

Work Step by Step

$$ f(x)=\frac{2x^{2}}{3x^{2}+1} $$ Begin by observing that $f$ is continuous on the entire real number line. Next, find the second derivative of $f$ $$ f^{\prime }(x)=\frac{4x}{(3x^{2}+1)^{2}} $$ $$ f^{\prime \prime }(x)=\frac{-4(3x-1)(3x+1)}{(3x^{2}+1)^{3}} $$ Because $f^{\prime \prime }(x)=0$ when $x=\pm \frac{1}{3}$ and $f^{\prime \prime }(x)$ is defined on the entire real number line, we should test $f^{\prime \prime }(x)$ in the intervals $(-\infty , -\frac{1}{3}), (-\frac{1}{3}, \frac{1}{3})$ and $(\frac{1}{3}, \infty)$. The results are shown in the following table: $$ \begin{array}{|c|c|c|c|}\hline \text { Interval } & {-\infty \lt x \lt -\frac{1}{3}} & {-\frac{1}{3}\lt x\lt \frac{1}{3}} & {\frac{1}{3}\lt x\lt \infty} \\ \hline \text { Test Value } & {x=-1} & {x=0} & {x=1} \\ \hline \text { Sign of } f^{\prime \prime}(x) & { f^{\prime \prime}(-1) \lt 0} & {f^{\prime \prime}(0)\gt 0} & {f^{\prime \prime}(1)\lt 0} \\ \hline \text { Conclusion } & {\text { Concave downward }} & { \text { Concave upward }} & {\text { Concave downward }} \\ \hline\end{array} $$ So, Concave upward: $$ (-\frac{1}{3}\lt x\lt \frac{1}{3}) $$ Concave downward: $$ (-\infty \lt x \lt \frac{-1}{3}) , (\frac{1}{3} \lt x \lt \infty) $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.