Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.4 Exercises - Page 1000: 3

Answer

$$m = \frac{1}{8}$$

Work Step by Step

$$\eqalign{ & 0 \leqslant x \leqslant 1,{\text{ }}0 \leqslant y \leqslant \sqrt {1 - {x^2}} \cr & {\text{The mass }}m{\text{ of the lamina is given by}} \cr & m = \iint\limits_R {\rho \left( {x,y} \right)dA} \cr & {\text{The density }}\rho \left( {x,y} \right) = xy,{\text{ then}} \cr & m = \int_0^1 {\int_0^{\sqrt {1 - {x^2}} } {xy} } dydx \cr & {\text{Integrating with respect to }}y \cr & m = \int_0^1 {\left[ {\frac{{x{y^2}}}{2}} \right]} _0^{\sqrt {1 - {x^2}} }dx \cr & m = \int_0^1 {\left[ {\frac{{x{{\left( {\sqrt {1 - {x^2}} } \right)}^2}}}{2} - \frac{{x{{\left( 0 \right)}^2}}}{2}} \right]} dx \cr & m = \frac{1}{2}\int_0^1 {x\left( {1 - {x^2}} \right)} dx \cr & m = \frac{1}{2}\int_0^1 {\left( {x - {x^3}} \right)} dx \cr & {\text{Integrate and evaluate}} \cr & m = \frac{1}{2}\left[ {\frac{1}{2}{x^2} - \frac{1}{4}{x^4}} \right]_0^1 \cr & m = \frac{1}{2}\left[ {\frac{1}{2}{{\left( 1 \right)}^2} - \frac{1}{4}{{\left( 1 \right)}^4}} \right] - \frac{1}{2}\left[ 0 \right] \cr & m = \frac{1}{8} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.