Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.4 Exercises - Page 1000: 1

Answer

$$m = 4$$

Work Step by Step

$$\eqalign{ & 0 \leqslant x \leqslant 2,{\text{ }}0 \leqslant y \leqslant 2 \cr & {\text{The mass }}m{\text{ of the lamina is given by}} \cr & m = \iint\limits_R {\rho \left( {x,y} \right)dA} \cr & {\text{The density }}\rho \left( {x,y} \right) = xy,{\text{ then}} \cr & m = \int_0^2 {\int_0^2 {xy} } dydx \cr & {\text{Integrating with respect to }}y \cr & m = \int_0^2 {\left[ {\frac{{x{y^2}}}{2}} \right]} _0^2dx \cr & m = \int_0^2 {\left[ {\frac{{x{{\left( 2 \right)}^2}}}{2} - \frac{{x{{\left( 0 \right)}^2}}}{2}} \right]} dx \cr & m = \int_0^2 {2x} dx \cr & {\text{Integrate and evaluate}} \cr & m = \left[ {{x^2}} \right]_0^2 \cr & m = {\left( 2 \right)^2} - {\left( 0 \right)^2} \cr & m = 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.