Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.7 Exercises - Page 933: 12

Answer

$$y - z = 0$$

Work Step by Step

$$\eqalign{ & g\left( {x,y} \right) = \arctan \frac{y}{x},{\text{ }}\left( {1,0,0} \right) \cr & z - \arctan \frac{y}{x} = 0 \cr & {\text{Considering }} \cr & F\left( {x,y,z} \right) = z - \arctan \frac{y}{x} \cr & {\text{Calculate the partial derivatives }} \cr & {F_x}\left( {x,y,z} \right) = \frac{\partial }{{\partial x}}\left[ {z - \arctan \frac{y}{x}} \right] = - \frac{{ - \frac{y}{{{x^2}}}}}{{1 + {{\left( {y/x} \right)}^2}}} = \frac{y}{{{x^2} + {y^2}}} \cr & {F_y}\left( {x,y,z} \right) = \frac{\partial }{{\partial y}}\left[ {z - \arctan \frac{y}{x}} \right] = - \frac{{\frac{1}{x}}}{{1 + {{\left( {y/x} \right)}^2}}} = - \frac{x}{{{x^2} + {y^2}}} \cr & {F_z}\left( {x,y,z} \right) = \frac{\partial }{{\partial z}}\left[ {z - \arctan \frac{y}{x}} \right] = 1 \cr & {\text{At the point }}\left( {1,0,0} \right){\text{ the partial derivatives are}} \cr & {F_x}\left( {1,0,0} \right) = \frac{0}{{{{\left( 1 \right)}^2} + {{\left( 0 \right)}^2}}} = 0 \cr & {F_y}\left( {1,0,0} \right) = - \frac{1}{{{{\left( 1 \right)}^2} + {{\left( 0 \right)}^2}}} = - 1 \cr & {F_z}\left( {1,0,0} \right) = 1 \cr & {\text{An equation of the tangent plane at }}\left( {{x_0},{y_0},{z_0}} \right){\text{ is}} \cr & {F_x}\left( {{x_0},{y_0},{z_0}} \right)\left( {x - {x_0}} \right) + {F_y}\left( {{x_0},{y_0},{z_0}} \right)\left( {y - {y_0}} \right) \cr & + {F_z}\left( {{x_0},{y_0},{z_0}} \right)\left( {z - {z_0}} \right) = 0 \cr & {\text{Substituting}} \cr & 0\left( {x - 1} \right) - 1\left( {y - 0} \right) + \left( {z - 0} \right) = 0 \cr & {\text{Simplifying}} \cr & - y + z + = 0 \cr & y - z = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.