Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.4 Exercises - Page 906: 43

Answer

The partial derivatives exist at $( 0,0)$ $f$ is not continuous and not differentiable at $( 0,0)$

Work Step by Step

Given $$f(x, y)=\left\{\begin{array}{ll}{\frac{3 x^{2} y}{x^{4}+y^{2}},} & {(x, y) \neq(0,0)} \\ {0,} & {(x, y)=(0,0)}\end{array}\right.$$ Firstly: \begin{array}{c}{f_{x}(0,0)=\lim _{\Delta x \rightarrow 0} \frac{f(\Delta x, 0)-f(0,0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\frac{0}{(\Delta x)^{4}}-0}{\Delta x}=0} \\ {f_{y}(0,0)=\lim _{\Delta y \rightarrow 0} \frac{f(0, \Delta y)-f(0,0)}{\Delta y}=\lim _{\Delta y \rightarrow 0} \frac{\frac{0}{(\Delta y)^{2}}-0}{\Delta y}=0}\end{array} So, the partial derivatives exist at $( 0,0)$ Secondly: \begin{align}{}{\text { Along the line } y=x:\\ \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{x \rightarrow 0} \frac{3 x^{3}}{x^{4}+x^{2}}=\lim _{x \rightarrow 0} \frac{3 x}{x^{2}+1}=0} \\ {\text { Along the curve } y=x^{2} : \\ \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\frac{3 x^{4}}{2 x^{4}}=\frac{3}{2}}\end{align} this implies that $f$ is not continuous at $(0, 0)$ . So, $f$ is not differentiable at $( 0,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.