Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - 13.2 Exercises - Page 887: 29

Answer

$$\lim _{(x, y) \rightarrow(0,0)} \frac{x+y}{x^2+y} $$ does not exist

Work Step by Step

Given$$\lim _{(x, y) \rightarrow(0,0)} \frac{x+y}{x^2+y} $$ So, $$\lim _{(x, y) \rightarrow(0,0)} \frac{0+0}{0^2+0} =\frac{0}{0}$$ so, we get along the line $x=0$ \begin{align} L&=\lim _{(x, y) \rightarrow(0,0)} \frac{x+y}{x^2+y} \\ &=\lim _{(0, y) \rightarrow(0,0)} \frac{y }{y } \\ &=1 \end{align} And therefore we get along the line $y=0$ \begin{align} L&=\lim _{(x, y) \rightarrow(0,0)} \frac{x+y}{x^2+y} \\ &=\lim _{(x, 0) \rightarrow(0,0)} \frac{x }{x^2 } \\ &=\lim _{(x, 0) \rightarrow(0,0)} \frac{1}{x } \\ &=\infty\\ \end{align} So, the limit does not exist
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.