Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 12 - Vector-Valued Functions - 12.2 Exercises - Page 830: 50

Answer

$$\frac{{{e^{ - t}}}}{2}\left( {\cos t - \sin t} \right){\bf{i}} + \frac{{{e^{ - t}}}}{2}\left( {\sin t - \cos t} \right){\bf{j}} + {\bf{C}}$$

Work Step by Step

$$\eqalign{ & \int {\left( {{e^{ - t}}\sin t{\bf{i}} + {e^{ - t}}\cos t{\bf{j}}} \right)} dt \cr & {\text{ By the Definition of Integration of Vector - Valued Functions}} \cr & = \left[ {\int {{e^{ - t}}\sin tdt} } \right]{\bf{i}} + \left[ {\int {{e^{ - t}}\cos tdt} } \right]{\bf{j}} \cr & {\text{By the tables of integration}} \cr & \int {{e^{au}}\sin bu} du = \frac{{{e^{au}}}}{{{a^2} + {b^2}}}\left( {a\sin bu - b\cos bu} \right) + C \cr & \int {{e^{ - t}}\sin u} du = \frac{{{e^{ - t}}}}{{{{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}}}\left( { - \sin t - \cos t} \right) + C \cr & \int {{e^{ - t}}\sin u} du = \frac{{{e^{ - t}}}}{2}\left( {\cos t - \sin t} \right) + C \cr & and \cr & \int {{e^{au}}\cos bu} du = \frac{{{e^{au}}}}{{{a^2} + {b^2}}}\left( {a\cos bu + b\sin bu} \right) + C \cr & \int {{e^{ - t}}\cos tdt} = \frac{{{e^{ - t}}}}{{{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}}}\left( { - \cos t + \sin t} \right) + C \cr & \int {{e^{ - t}}\cos tdt} = \frac{{{e^{ - t}}}}{2}\left( {\sin t - \cos t} \right) + C \cr & {\text{Therefore,}} \cr & = \left[ {\int {{e^{ - t}}\sin tdt} } \right]{\bf{i}} + \left[ {\int {{e^{ - t}}\cos tdt} } \right]{\bf{j}} \cr & = \frac{{{e^{ - t}}}}{2}\left( {\cos t - \sin t} \right){\bf{i}} + \frac{{{e^{ - t}}}}{2}\left( {\sin t - \cos t} \right){\bf{j}} + {\bf{C}} \cr & {\text{where }}{\bf{C}}{\text{ is a constant vector}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.