Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.5 Exercises - Page 732: 53

Answer

$s = 4\pi $

Work Step by Step

$$\eqalign{ & r = 4\sin \theta ,{\text{ 0}} \leqslant \theta \leqslant \pi \cr & {\text{Find the Arc Length of a Polar curve}}{\text{, use the Theorem 10}}{\text{.14}} \cr & s = \int_\alpha ^\beta {\sqrt {{{\left[ {f\left( \theta \right)} \right]}^2} + {{\left[ {f'\left( \theta \right)} \right]}^2}} } d\theta \cr & {\text{Let }}r = f\left( \theta \right) = 4\sin \theta ,{\text{ }}\underbrace {{\text{0}} \leqslant \theta \leqslant \pi }_{\alpha \leqslant \theta \leqslant \beta } \cr & f\left( \theta \right) = 4\sin \theta \cr & f'\left( \theta \right) = 4\cos \theta \cr & {\text{Therefore}}{\text{,}} \cr & s = \int_0^\pi {\sqrt {{{\left[ {4\sin \theta } \right]}^2} + {{\left[ {4\cos \theta } \right]}^2}} } d\theta \cr & s = \int_0^\pi {\sqrt {16{{\sin }^2}\theta + 16{{\cos }^2}\theta } } d\theta \cr & s = \int_0^\pi {\sqrt {16\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)} } d\theta \cr & s = 4\int_0^\pi {d\theta } \cr & {\text{Integrate}} \cr & s = 4\left[ \theta \right]_0^\pi \cr & s = 4\left( {\pi - 0} \right) \cr & s = 4\pi \cr & \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.