Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.5 Exercises - Page 732: 52

Answer

$s = 2\pi a$

Work Step by Step

$$\eqalign{ & r = a,{\text{ 0}} \leqslant \theta \leqslant 2\pi \cr & {\text{Find the Arc Length of a Polar curve}}{\text{, use the Theorem 10}}{\text{.14}} \cr & s = \int_\alpha ^\beta {\sqrt {{{\left[ {f\left( \theta \right)} \right]}^2} + {{\left[ {f'\left( \theta \right)} \right]}^2}} } d\theta \cr & {\text{Let }}r = f\left( \theta \right) = a,{\text{ }}\underbrace {{\text{0}} \leqslant \theta \leqslant 2\pi }_{\alpha \leqslant \theta \leqslant \beta } \cr & f\left( \theta \right) = a \cr & f'\left( \theta \right) = 0 \cr & {\text{Therefore}}{\text{,}} \cr & s = \int_0^{2\pi } {\sqrt {{{\left[ a \right]}^2} + {{\left[ 0 \right]}^2}} } d\theta \cr & s = \int_0^{2\pi } {\sqrt {{a^2}} } d\theta \cr & s = a\int_0^{2\pi } {d\theta } \cr & {\text{Integrate}} \cr & s = a\left[ \theta \right]_0^{2\pi } \cr & s = a\left( {2\pi - 0} \right) \cr & s = 2\pi a \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.