Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.3 Exercises - Page 713: 68

Answer

$23.450$

Work Step by Step

$x=\frac{1}{3}t^3$, $y=t+1$, $1\leq t \leq 2$, y-axis Use the area for the surface area of a parametric curve: $S=2\pi\int_{a}^{b}x(t)\sqrt ((\frac{dx}{dt})^2+(\frac{dy}{dt})^2)dt$ $\frac{dx}{dθ}=t^2$ $\frac{dy}{dθ}=1$ $S=2\pi\int_{1}^{2}(\frac{1}{3}t^3)\sqrt( (t^2)^2+(1)^2)dt$ $S=\frac{2}{3}\pi\int_{1}^{2}(t^3)\sqrt(t^4+1)dt$ Use u-sub: $let$ $u=t^4+1$ $du=4t^3dt$ $\frac{1}{4}du=t^3dt$ $u(1)=2$ $u(2)=17$ $S=\frac{1}{6}\pi\int_{2}^{17}\sqrt(u)du$ $S=\frac{1}{6}\pi[\frac{2}{3}u^{\frac{3}{2}}]_{2}^{17}$ $S=\frac{1}{9}\pi[u^{\frac{3}{2}}]_{2}^{17}$ $S=\frac{1}{9}\pi[17^{\frac{3}{2}}-2^{\frac{3}{2}}]$ $S\approx23.450$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.