Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.3 Exercises - Page 713: 67

Answer

$50\pi$

Work Step by Step

$x=5cosθ$, $y=5sinθ$, $0\leq θ \leq \frac{\pi}{2}$, y-axis Use the area for the surface area of a parametric curve: $S=2\pi\int_{a}^{b}x(θ)\sqrt ((\frac{dx}{dθ})^2+(\frac{dy}{dθ})^2)dθ$ $\frac{dx}{dθ}=-5sinθ$ $\frac{dy}{dθ}=5cosθ$ $S=2\pi\int_{0}^{\frac{\pi}{2}}5cosθ\sqrt ((-5sinθ)^2+(5cosθ)^2)dθ$ $S=2\pi\int_{0}^{\frac{\pi}{2}}5cosθ\sqrt (25sin^2θ+25cos^2θ)dθ$ $S=2\pi\int_{0}^{\frac{\pi}{2}}5cosθ\sqrt (25(sin^2θ+cos^2θ)dθ$ By the Pythagorean identity $sin^2θ+cos^2θ=1$: $S=2\pi\int_{0}^{\frac{\pi}{2}}25cosθdθ$ $S=50\pi\int_{0}^{\frac{\pi}{2}}cosθdθ$ $S=50\pi[sinθ]_{0}^{\frac{\pi}{2}}$ $S=50\pi[1-0]$ $S=50\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.