Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.3 Exercises - Page 712: 47

Answer

$1.120$

Work Step by Step

$x=e^{-t}cost$, $y=e^{-t}sint$, $0\leq t \leq \frac{\pi}{2}$ The arc length of a parametric curve is calculated using the formula: $L=\int_{a}^{b}\sqrt ((\frac{dx}{dt})^2+(\frac{dy}{dt})^2)dt$ $\frac{dx}{dt}=-e^{-t}cost-e^{-t}sint$ $\frac{dy}{dt}=-e^{-t}sint+e^{-t}cost$ $L=\int_{0}^{\frac{\pi}{2}}\sqrt ((-e^{-t}cost-e^{-t}sint)^2+(-e^{-t}sint+e^{-t}cost)^2)dt$ $L=\int_{0}^{\frac{\pi}{2}}\sqrt (e^{-2t}cos^2t+2e^{-2t}costsint+e^{-2t}sin^2t+e^{-2t}sin^2t-2e^{-2t}costsint+e^{-2t}cos^2t)dt$ $L=\int_{0}^{\frac{\pi}{2}}\sqrt (2e^{-2t}cos^2t+2e^{-2t}sin^2t)dt$ $L=\int_{0}^{\frac{\pi}{2}}\sqrt (2e^{-2t}(cos^2t+sin^2t))dt$ By the Pythagorean identity $sin^2x+cos^2x=1$: $L=\int_{0}^{\frac{\pi}{2}}\sqrt (2e^{-2t})dt$ $L=\sqrt 2\int_{0}^{\frac{\pi}{2}}e^{-t}dt$ $L=\sqrt 2[-e^{-t}]_{0}^{\frac{\pi}{2}}$ $L=\sqrt 2[-e^{-\frac{\pi}{2}}+1]$ $L\approx1.120$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.