Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 10 - Conics, Parametric Equations, and Polar Coordinates - 10.3 Exercises - Page 712: 46

Answer

$70\sqrt 5$

Work Step by Step

$x=6t^2$, $y=2t^3$, $1\leq t \leq4$ The arc length of a parametric curve is calculated using the formula: $L=\int_{a}^{b}\sqrt ((\frac{dx}{dt})^2+(\frac{dy}{dt})^2)dt$ $\frac{dx}{dt}=12t$ $\frac{dy}{dt}=6t^2$ $L=\int_{1}^{4}\sqrt ((12t)^2+(6t^2)^2)dt$ $L=\int_{1}^{4}\sqrt (144t^2+36t^4)dt$ $L=\int_{1}^{4}\sqrt (36t^2(4+t^2))dt$ $L=\int_{1}^{4}6t\sqrt (4+t^2)dt$ Use u-sub: $let$ $u = 4+t^2$ $du=2tdt$ $\frac{1}{2}du=tdt$ $u(1)=5$ $u(4)=20$ $L=\frac{1}{2}\int_{5}^{20}6\sqrt u du$ $L=3[\frac{2}{3}u^{\frac{3}{2}}]_{5}^{20}$ $L=2[u^{\frac{3}{2}}]_{5}^{20}$ $L=2[20^{\frac{3}{2}}-5^{\frac{3}{2}}]$ $L=2[(4\times5)^{\frac{3}{2}}-5\sqrt 5]$ $L=2[8(5\sqrt 5)-5\sqrt 5]$ $L=2[40\sqrt 5-5\sqrt 5]$ $L=70\sqrt 5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.