Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 486: 84

Answer

$$\frac{\pi }{{18}}$$

Work Step by Step

$$\eqalign{ & \int_0^{2/\sqrt 3 } {\frac{1}{{4 + 9{x^2}}}} dx \cr & or \cr & \int_0^{2/\sqrt 3 } {\frac{1}{{{{\left( 2 \right)}^2} + {{\left( {3x} \right)}^2}}}} dx \cr & {\text{substitute }}u = 3x,{\text{ }}du = 3dx,{\text{ }} \cr & {\text{With this substitution}}{\text{,}} \cr & {\text{if }}x = 0,{\text{ }}u = 3\left( 0 \right) = 0 \cr & {\text{if }}x = 2/\sqrt 3 ,{\text{ }}u = 3\left( {2/\sqrt 3 } \right) = 2\sqrt 3 \cr & \int_0^{2/\sqrt 3 } {\frac{1}{{{{\left( 2 \right)}^2} + {{\left( {3x} \right)}^2}}}} dx = \frac{1}{3}\int_0^{2\sqrt 3 } {\frac{1}{{{2^2} + {u^2}}}} du \cr & {\text{find the antiderivative }} \cr & = \frac{1}{6}{\tan ^{ - 1}}\left. {\left( {\frac{u}{2}} \right)} \right|_0^{2\sqrt 3 } \cr & {\text{part 1 of fundamental theorem of calculus}} \cr & = \frac{1}{6}{\tan ^{ - 1}}\frac{{2\sqrt 3 }}{2} - \frac{1}{6}{\tan ^{ - 1}}\frac{0}{2} \cr & {\text{simplifying}} \cr & = \frac{1}{6}\left( {\frac{\pi }{3}} \right) \cr & = \frac{\pi }{{18}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.