Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 486: 65

Answer

$${\text{Relative minimum of 0 at }}x = 0$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \ln \left( {1 + {x^2}} \right) \cr & {\text{Differentiate both sides with respect to }}x \cr & f'\left( x \right) = \frac{{2x}}{{1 + {x^2}}} \cr & {\text{Set }}f'\left( x \right) = 0 \cr & \frac{{2x}}{{1 + {x^2}}} = 0 \cr & x = 0 \cr & {\text{Calculate the second derivative}} \cr & f''\left( x \right) = \frac{d}{{dx}}\left[ {\frac{{2x}}{{1 + {x^2}}}} \right] \cr & f''\left( x \right) = \frac{{2\left( {1 + {x^2}} \right) - 2x\left( {2x} \right)}}{{{{\left( {1 + {x^2}} \right)}^2}}} \cr & f''\left( x \right) = \frac{{2 + 2{x^2} - 4{x^2}}}{{{{\left( {1 + {x^2}} \right)}^2}}} \cr & f''\left( x \right) = \frac{{2 - 2{x^2}}}{{{{\left( {1 + {x^2}} \right)}^2}}} \cr & {\text{Evaluate }}f''\left( 0 \right) \cr & f''\left( 0 \right) = \frac{{2 - 2{{\left( 0 \right)}^2}}}{{{{\left( {1 + {{\left( 0 \right)}^2}} \right)}^2}}} = 2 \cr & f''\left( 0 \right) > 0,{\text{ Therefore, there is a relative minimum at }}x = 0 \cr & f\left( 0 \right) = \ln \left( {1 + {{\left( 0 \right)}^2}} \right) \cr & f\left( 0 \right) = 0 \cr & \cr & {\text{Relative minimum of 0 at }}x = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.