Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - Chapter 6 Review Exercises - Page 485: 55

Answer

$$\pi $$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {1 + h} \right)}^\pi } - 1}}{h} \cr & {\text{The limit can be written as }} \cr & \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {1 + h} \right)}^\pi } - {{\left( {1 + 0} \right)}^\pi }}}{{h - 0}} \cr & {\text{From the definition of the derivative }} \cr & f'\left( c \right) = \mathop {\lim }\limits_{x \to c} \frac{{f\left( x \right) - f\left( c \right)}}{{x - c}} \cr & \underbrace {\mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {1 + h} \right)}^\pi } - {{\left( {1 + 0} \right)}^\pi }}}{{h - 0}}}_{f'\left( c \right) = \mathop {\lim }\limits_{x \to c} \frac{{f\left( x \right) - f\left( c \right)}}{{x - c}}} \Rightarrow f\left( h \right) = {\left( {1 + h} \right)^\pi },{\text{ }}a = 0 \cr & {\text{Then }} \cr & f'\left( h \right) = \frac{d}{{dh}}\left[ {{{\left( {1 + h} \right)}^\pi }} \right] \cr & f'\left( h \right) = \pi {\left( {1 + h} \right)^{\pi - 1}} \cr & \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {1 + h} \right)}^\pi } - {{\left( {1 + 0} \right)}^\pi }}}{{h - 0}} = f'\left( 0 \right) \cr & f'\left( 0 \right) = \pi {\left( {1 + 0} \right)^{\pi - 1}} = \pi {\left( 1 \right)^{\pi - 1}} = \pi \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {1 + h} \right)}^\pi } - 1}}{h} = \pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.