Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.7 Derivatives And Integrals Involving Inverse Trigonometric Functions - Exercises Set 6.7 - Page 469: 34

Answer

$$ = \frac{1}{2}ta{n^{ - 1}}\left( {{t^2}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{t}{{{t^4} + 1}}} dt \cr & or \cr & \int {\frac{t}{{{{\left( {{t^2}} \right)}^2} + 1}}} dt \cr & {\text{substitutue }}u = {t^2},{\text{ }}du = 2tdt,{\text{ }}tdt = \frac{1}{2}du \cr & \int {\frac{t}{{{{\left( {{t^2}} \right)}^2} + 1}}} dt = \int {\frac{{\left( {1/2} \right)du}}{{{u^2} + 1}}} \cr & = \frac{1}{2}\int {\frac{{du}}{{{u^2} + 1}}} \cr & {\text{ use the formula }}\int {\frac{{du}}{{{a^2} + {u^2}}}} = \frac{1}{a}ta{n^{ - 1}}\left( {\frac{u}{a}} \right) + C,{\text{ }}\left( {{\text{see page 468}}} \right) \cr & = \frac{1}{2}\left( {\frac{1}{1}ta{n^{ - 1}}\left( {\frac{u}{1}} \right)} \right) + C \cr & = \frac{1}{2}ta{n^{ - 1}}\left( u \right) + C \cr & {\text{write in terms of }}x \cr & = \frac{1}{2}ta{n^{ - 1}}\left( {{t^2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.