Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.7 Derivatives And Integrals Involving Inverse Trigonometric Functions - Exercises Set 6.7 - Page 469: 27

Answer

$$\frac{{dy}}{{dx}} = \frac{{\left( {{{\tan }^{ - 1}}y + 3{x^2}} \right)\left( {1 + {y^2}} \right)}}{{{e^y}\left( {1 + {y^2}} \right) - x}}$$

Work Step by Step

$$\eqalign{ & {x^3} + x{\tan ^{ - 1}}y = {e^y} \cr & {\text{Differentiate with respect to }}x{\text{ }} \cr & \frac{d}{{dx}}\left[ {{x^3} + x{{\tan }^{ - 1}}y} \right] = \frac{d}{{dx}}\left[ {{e^y}} \right] \cr & {\text{Use product rule}} \cr & \frac{d}{{dx}}\left[ {{x^3}} \right] + x\frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}y} \right] + {\tan ^{ - 1}}y\frac{d}{{dx}}\left[ x \right] = \frac{d}{{dx}}\left[ {{e^y}} \right] \cr & {\text{Compute the derivatives}} \cr & 3{x^2} + x\left( {\frac{1}{{1 + {y^2}}}} \right)\frac{{dy}}{{dx}} + {\tan ^{ - 1}}y\left( 1 \right) = {e^y}\frac{{dy}}{{dx}} \cr & {\text{Rearrange the equation}} \cr & x\left( {\frac{1}{{1 + {y^2}}}} \right)\frac{{dy}}{{dx}} - {e^y}\frac{{dy}}{{dx}} = - {\tan ^{ - 1}}y - 3{x^2} \cr & {\text{Solve the equation for }}\frac{{dy}}{{dx}} \cr & \left( {\frac{x}{{1 + {y^2}}} - {e^y}} \right)\frac{{dy}}{{dx}} = - {\tan ^{ - 1}}y - 3{x^2} \cr & \left( {\frac{{x - {e^y}\left( {1 + {y^2}} \right)}}{{1 + {y^2}}}} \right)\frac{{dy}}{{dx}} = - {\tan ^{ - 1}}y - 3{x^2} \cr & \frac{{dy}}{{dx}} = \frac{{\left( { - {{\tan }^{ - 1}}y - 3{x^2}} \right)\left( {1 + {y^2}} \right)}}{{x - {e^y}\left( {1 + {y^2}} \right)}} \cr & \frac{{dy}}{{dx}} = \frac{{\left( {{{\tan }^{ - 1}}y + 3{x^2}} \right)\left( {1 + {y^2}} \right)}}{{{e^y}\left( {1 + {y^2}} \right) - x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.