Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.6 Logarithmic And Other Functions Defined By Integrals - Exercises Set 6.6 - Page 459: 8

Answer

$$\eqalign{ & \left( {\text{a}} \right)\frac{1}{9} \cr & \left( {\text{b}} \right)\frac{7}{2} \cr} $$

Work Step by Step

$$\eqalign{ & \left( {\text{a}} \right){\text{ Let }}f\left( x \right) = {e^{ - 2x}},{\text{ evaluate }}f\left( {\ln 3} \right) \cr & f\left( {\ln 3} \right) = {e^{ - 2\ln 3}} \cr & {\text{Use the property }}a\ln b = \ln {b^a} \cr & f\left( {\ln 3} \right) = {e^{\ln {3^{ - 2}}}} \cr & {\text{Use the property }}{e^{\ln x}} = x \cr & f\left( {\ln 3} \right) = {3^{ - 2}} \cr & f\left( {\ln 3} \right) = \frac{1}{9} \cr & \cr & \left( {\text{b}} \right){\text{ Let }}f\left( x \right) = {e^x} + 3{e^{ - x}},{\text{ evaluate }}f\left( {\ln 2} \right) \cr & f\left( {\ln 2} \right) = {e^{\ln 2}} + 3{e^{ - \ln 2}} \cr & {\text{Use the property }}a\ln b = \ln {b^a} \cr & f\left( {\ln 2} \right) = {e^{\ln 2}} + 3{e^{\ln {2^{ - 1}}}} \cr & f\left( {\ln 2} \right) = 2 + 3\left( {{2^{ - 1}}} \right) \cr & f\left( {\ln 2} \right) = 2 + 3\left( {\frac{1}{2}} \right) \cr & f\left( {\ln 2} \right) = 2 + \frac{3}{2} \cr & f\left( {\ln 2} \right) = \frac{7}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.