Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.6 Logarithmic And Other Functions Defined By Integrals - Exercises Set 6.6 - Page 459: 11

Answer

$$\eqalign{ & \left( {\text{a}} \right)\sqrt e \cr & \left( {\text{b}} \right){e^2} \cr} $$

Work Step by Step

$$\eqalign{ & \left( {\text{a}} \right)\mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{1}{{2x}}} \right)^x} \cr & {\text{Let }}t = 2x{\text{ }} \Rightarrow {\text{ }}x = \frac{t}{2},{\text{ }}x \to + \infty {\text{ then }}t \to + \infty \cr & \mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{1}{{2x}}} \right)^x} = \mathop {\lim }\limits_{t \to + \infty } {\left( {1 + \frac{1}{t}} \right)^{t/2}} = {\left[ {\mathop {\lim }\limits_{t \to + \infty } {{\left( {1 + \frac{1}{t}} \right)}^t}} \right]^{1/2}} \cr & {\text{From the theorem 6}}{\text{.6}}{\text{.8 we have that }}\mathop {\lim }\limits_{x \to + \infty } {\left( {1 + \frac{1}{x}} \right)^x} = e,{\text{ so}} \cr & {\left[ {\mathop {\lim }\limits_{t \to + \infty } {{\left( {1 + \frac{1}{t}} \right)}^t}} \right]^{1/2}} = {\left( e \right)^{1/2}} = \sqrt e \cr & \cr & \left( {\text{b}} \right)\mathop {\lim }\limits_{x \to 0} {\left( {1 + 2x} \right)^{1/x}} \cr & {\text{Let }}t = 2x{\text{ }} \Rightarrow {\text{ }}x = \frac{t}{2},{\text{ }}x \to 0{\text{ then }}t \to 0 \cr & \mathop {\lim }\limits_{x \to 0} {\left( {1 + 2x} \right)^{1/x}} = \mathop {\lim }\limits_{t \to 0} {\left( {1 + t} \right)^{2/t}} = {\left[ {\mathop {\lim }\limits_{t \to 0} {{\left( {1 + t} \right)}^{1/t}}} \right]^2} \cr & {\text{From the theorem 6}}{\text{.6}}{\text{.8 we have that }}\mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{1/x}} = e,{\text{ so}} \cr & {\left[ {\mathop {\lim }\limits_{t \to 0} {{\left( {1 + t} \right)}^{1/t}}} \right]^2} = {\left( e \right)^2} = {e^2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.