Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.4 Graphs And Applications Involving Logarithmic And Exponential Functions - Exercises Set 6.4 - Page 440: 62

Answer

$$L = 2\left( {{e^4} - e} \right)$$

Work Step by Step

$$\eqalign{ & {\text{Let }}x = {e^t}\left( {\sin t + \cos t} \right),{\text{ }}y = {e^t}\left( {\cos t - \sin t} \right),{\text{ }}\left( {1 \leqslant t \leqslant 4} \right) \cr & {\text{Find the arc length using }}L = \int_a^b {\sqrt {{{\left( {\frac{{dx}}{{dt}}} \right)}^2} + {{\left( {\frac{{dy}}{{dt}}} \right)}^2}} } dt \cr & \frac{{dx}}{{dt}} = \frac{d}{{dt}}\left[ {{e^t}\cos t} \right] = 2{e^t}\cos t \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {{e^t}\sin t} \right] = - 2{e^t}\sin t \cr & L = \int_1^4 {\sqrt {{{\left( {2{e^t}\cos t} \right)}^2} + {{\left( { - 2{e^t}\sin t} \right)}^2}} dt} \cr & {\text{Simplifying}} \cr & L = \int_1^4 {\sqrt {4{e^{2t}}{{\cos }^2}t + 4{e^{2t}}{{\sin }^2}t} dt} \cr & L = \int_1^4 {\sqrt {4{e^{2t}}\left( {{{\cos }^2}t + {{\sin }^2}t} \right)} dt} \cr & L = \int_1^4 {\sqrt {4{e^{2t}}} dt} \cr & L = \int_1^4 {2{e^t}dt} \cr & {\text{Integrating}} \cr & L = 2\left[ {{e^t}} \right]_1^4 \cr & L = 2\left( {{e^4} - e} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.