Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.3 Derivatives Of Inverse Functions; Derivatives And Integrals Involving Exponential Functions - Exercises Set 6.3 - Page 432: 42

Answer

$$\frac{{dy}}{{dx}} = \frac{{\left( {{2^{\cos x + \ln x}}\ln 2} \right)\left( {1 - x\sin x} \right)}}{x}$$

Work Step by Step

$$\eqalign{ & y = {2^{\cos x + \ln x}} \cr & {\text{Find }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{2^{\cos x + \ln x}}} \right] \cr & {\text{use the formula }}\frac{d}{{dx}}\left[ {{b^u}} \right] = {b^u}\ln b \cdot \frac{{du}}{{dx}}\,\,\,\left( {See\,\,page\,\,\,429} \right) \cr & {\text{consider }}b = 2{\text{ and }}u = \cos x + \ln x.\,{\text{Thus}}{\text{,}} \cr & \frac{{dy}}{{dx}} = {2^{\cos x + \ln x}}\ln 2 \cdot \frac{d}{{dx}}\left[ {\cos x + \ln x} \right] \cr & {\text{differentiate}} \cr & \frac{{dy}}{{dx}} = {2^{\cos x + \ln x}}\ln 2 \cdot \left( { - \sin x + \frac{1}{x}} \right) \cr & {\text{simplify}} \cr & \frac{{dy}}{{dx}} = {2^{\cos x + \ln x}}\ln 2 \cdot \left( {\frac{{1 - x\sin x}}{x}} \right) \cr & \frac{{dy}}{{dx}} = \frac{{\left( {{2^{\cos x + \ln x}}\ln 2} \right)\left( {1 - x\sin x} \right)}}{x} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.