Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.2 Derivatives And Integrals Involving Logarithmic Functions - Exercises Set 6.2 - Page 425: 37

Answer

$$\frac{{dy}}{{dx}} = \frac{{{{\left( {{x^2} - 8} \right)}^{1/3}}\sqrt {{x^3} + 1} }}{{{x^6} - 7x + 5}}\left[ {\frac{{2x}}{{3\left( {{x^2} - 8} \right)}} + \frac{{3{x^2}}}{{2\left( {{x^3} + 1} \right)}} - \frac{{6{x^5} - 7}}{{{x^6} - 7x + 5}}} \right]$$

Work Step by Step

$$\eqalign{ & y = \frac{{{{\left( {{x^2} - 8} \right)}^{1/3}}\sqrt {{x^3} + 1} }}{{{x^6} - 7x + 5}} \cr & {\text{using radical properties}} \cr & y = \frac{{{{\left( {{x^2} - 8} \right)}^{1/3}}{{\left( {{x^3} + 1} \right)}^{1/2}}}}{{{x^6} - 7x + 5}} \cr & {\text{taking the natural logarithm on both sides of the equation}} \cr & \ln y = \ln \left[ {\frac{{{{\left( {{x^2} - 8} \right)}^{1/3}}{{\left( {{x^3} + 1} \right)}^{1/2}}}}{{{x^6} - 7x + 5}}} \right] \cr & {\text{quotient rule of logarithms}} \cr & \ln y = \ln {\left( {{x^2} - 8} \right)^{1/3}}{\left( {{x^3} + 1} \right)^{1/2}} - \ln \left( {{x^6} - 7x + 5} \right) \cr & {\text{product rule of logarithms}} \cr & \ln y = \ln {\left( {{x^2} - 8} \right)^{1/3}} + \ln {\left( {{x^3} + 1} \right)^{1/2}} - \ln \left( {{x^6} - 7x + 5} \right) \cr & {\text{power rule of logarithms}} \cr & \ln y = \frac{1}{3}\ln \left( {{x^2} - 8} \right) + \frac{1}{2}\ln \left( {{x^3} + 1} \right) - \ln \left( {{x^6} - 7x + 5} \right) \cr & {\text{Differentiate both sides}} \cr & \ln y = \frac{1}{3}\left( {\frac{{2x}}{{{x^2} - 8}}} \right) + \frac{1}{2}\left( {\frac{{3{x^2}}}{{{x^3} + 1}}} \right) - \frac{{6{x^5} - 7}}{{{x^6} - 7x + 5}} \cr & {\text{Solve for dy/dx}} \cr & \frac{{dy}}{{dx}} = y\left[ {\frac{1}{3}\left( {\frac{{2x}}{{{x^2} - 8}}} \right) + \frac{1}{2}\left( {\frac{{3{x^2}}}{{{x^3} + 1}}} \right) - \frac{{6{x^5} - 7}}{{{x^6} - 7x + 5}}} \right] \cr & {\text{substituting }}y = \frac{{{{\left( {{x^2} - 8} \right)}^{1/3}}\sqrt {{x^3} + 1} }}{{{x^6} - 7x + 5}} \cr & \frac{{dy}}{{dx}} = \frac{{{{\left( {{x^2} - 8} \right)}^{1/3}}\sqrt {{x^3} + 1} }}{{{x^6} - 7x + 5}}\left[ {\frac{{2x}}{{3\left( {{x^2} - 8} \right)}} + \frac{{3{x^2}}}{{2\left( {{x^3} + 1} \right)}} - \frac{{6{x^5} - 7}}{{{x^6} - 7x + 5}}} \right] \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.