Answer
$$A = 4$$
Work Step by Step
$$\eqalign{
& {\text{From the graph we can note that the area is given by}} \cr
& A = \int_0^2 {\left( {0 - \left( {{x^3} - 4x} \right)} \right)} dx \cr
& A = \int_0^2 {\left( {4x - {x^3}} \right)} dx \cr
& {\text{Integrate}} \cr
& A = \left[ {2{x^2} - \frac{1}{4}{x^4}} \right]_0^2 \cr
& {\text{Evaluate}} \cr
& A = \left[ {2{{\left( 2 \right)}^2} - \frac{1}{4}{{\left( 2 \right)}^4}} \right] - \left[ {2{{\left( 0 \right)}^2} - \frac{1}{4}{{\left( 0 \right)}^4}} \right] \cr
& {\text{Simplify}} \cr
& A = 4 - 0 \cr
& A = 4 \cr} $$