Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - Chapter 4 Review Exercises - Page 343: 17

Answer

$\text {Area under the graph = $\frac{32}{3}$}$

Work Step by Step

$\text {It is given that}$ \begin{align} f(x) = 4x-x^2; \ \ [a, b] = [0, 4] \end{align} $\text {Also, it is given that x$_k^*$ should be the left endpoint of each subinterval:}$ \begin{align} x_k^* = a + k \varDelta x = k \varDelta x \end{align} $\text {According to the Definition 4.4.3:}$ \begin{align} A = \lim\limits_{n \to \infty} \sum_{k=1}^n f(x_k^*) \varDelta x \end{align} $\text {Therefore:}$ \begin{align} &A = \lim\limits_{n \to \infty} \sum_{k=1}^n (4k \varDelta x-k^2\varDelta x^2)\varDelta x = \lim\limits_{n \to \infty} \sum_{k=1}^n (4k \varDelta x^2-k^2\varDelta x^3) \\ & where \ \varDelta x = \frac{b-a}{n} = \frac{4}{n} \end{align} $\text {Thus,}$ \begin{align} &A = \lim\limits_{n \to \infty} \sum_{k=1}^n \left(\frac{64k}{n^2} - \frac{64k^2}{n^3}\right) = \lim\limits_{n \to \infty} \left(\frac{64}{n^2}\sum_{k=1}^n k - \frac{64}{n^3}\sum_{k=1}^n k^2\right) = \\ & = \lim\limits_{n \to \infty} \left(\frac{64}{n^2} \times \frac{n(n+1)}{2} - \frac{64}{n^3} \times \frac{n(n+1)(2n+1)}{6}\right) = \\ & = \lim\limits_{n \to \infty} \left(32 \left(1+\frac{1}{n} \right) - \frac{32}{3} \left(1+\frac{1}{n} \right) \left(2+\frac{1}{n} \right)\right) = 32 - \frac{64}{3} =\frac{32}{3} \end{align}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.