Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.9 Evaluating Definite Integrals By Substitution - Exercises Set 4.9 - Page 342: 52

Answer

(a) Zero (b) Zero

Work Step by Step

(a) We are required to find the integral: $\int_{-1}^{1} x \sqrt{\cos \left(x^{2}\right)} d x$ Splitting the integral into two parts and replacing $(x) \ with \ (-t)$ in one of them: Reversing the limits of the first integral: \[ \begin{aligned} \int_{-1}^{1} x \sqrt{\cos \left(x^{2}\right)} d x &=\int_{0}^{1} x \sqrt{\cos \left(x^{2}\right)} d x+\int_{-1}^{0} x \sqrt{\cos \left(x^{2}\right)} d x \\ &=\int_{0}^{1} x \sqrt{\cos \left(x^{2}\right)} d x+\int_{1}^{0}(-t) \sqrt{\cos \left((-t)^{2}\right)}(-d t) \quad\{-t=x \Rightarrow d x=-d t\} \\ &=\int_{0}^{1} x \sqrt{\cos \left(x^{2}\right)} d x+\int_{1}^{0} t \sqrt{\cos \left(t^{2}\right)} d t \end{aligned} \] (b) To simplify the integral, substitute $-(\pi / 2)+x=u \Rightarrow d x=d u$ $-\int_{b}^{a} f(x) d x=\int_{a}^{b} f(x) d x$ Note that the Integrand is an odd function, so the integral is $ 0 .$ More formally \[ \begin{array}{l} =\int_{0}^{1} x \sqrt{\cos \left(x^{2}\right)} d x-\int_{0}^{1} t \sqrt{\cos \left(t^{2}\right)} d t \\ =0 \end{array} \] Replacing $(w) \ with\ (-u) $ in the second integral \[ \begin{array}{l} \int_{0}^{\pi} \cos ^{5} x \sin ^{8} x d x=\int_{-\pi / 2}^{\pi / 2} \cos ^{5}(\pi / 2+u) \sin ^{8}(\pi / 2+u) d u \\ \int_{0}^{\pi} \cos ^{5} x \sin ^{8} x d x=\int_{-\pi / 2}^{\pi / 2}-\cos ^{8} u \sin ^{5} u d u \end{array} \] $\int_{-\pi / 2}^{\pi / 2}-\sin ^{5} u \cos ^{8} u d u=\int_{0}^{\pi / 2}-\sin ^{5} u \cos ^{8} u d u+\int_{-\pi / 2}^{0}-\sin ^{5} u \cos ^{8} u d u$ \[ \begin{array}{l} =\int_{0}^{\pi / 2}-\sin ^{5} u \cos ^{8} u d u+\int_{\pi / 2}^{0}-\sin ^{5} w \cos ^{8} w d w \\ =\int_{0}^{\pi / 2}-\sin ^{5} u \cos ^{8} u d u-\int_{0}^{\pi / 2}-\sin ^{5} w \cos ^{8} w d w \end{array} \] $=0 \quad\{\text { As the two integrations are exactly the same }\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.