Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.3 Integration By Substitution - Exercises Set 4.3 - Page 287: 49

Answer

The estimated number of E. coli cells after 20 minutes is 28.779.

Work Step by Step

It is given that the number of E. coli cells is modelled by the initial-value problem with the following parameters: \begin{alignat}{2} \frac{dy}{dt}=&0.95(0.79+0.024t)^{\frac{3}{2}} \\ & y(0) = 20 \\ \end{alignat} First, let us integrate in order to solve the initial-value problem: \begin{align} y = \int(0.95(0.79+0.024t)^{\frac{3}{2}})dt \\ \end{align} Let u = 0.79 + 0.024t $\Rightarrow$ du = 0.024dt $\Rightarrow$ dt = $\frac{du}{0.024}$ \begin{align} y = \int0.95u^{\frac{3}{2}}dt=\int39.583u^{\frac{3}{2}}du = 15.833u^{\frac{5}{2}}+C \end{align} Recall that u = 0.79 + 0.024t \begin{align} y = 15.833(0.79 + 0.024t)^{\frac{5}{2}}+C \end{align} By using the initial value y(0) = 20: \begin{alignat}{3} 20 &= 15.833\times(0.79)^{\frac{5}{2}}+C \\ &C = 11.217 \\ & y = 15.833(0.79 + 0.024t)^{\frac{5}{2}}+11.217 \end{alignat} The estimated number of E. coli after 20 minutes: \begin{alignat}{3} y = 15.833(0.79 + 0.024\times20)^{\frac{5}{2}}+11.217=28.779 \end{alignat}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.