Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.3 Integration By Substitution - Exercises Set 4.3 - Page 287: 48

Answer

The population at the beginning of the year 2015 is 130,004

Work Step by Step

\[ \begin{array}{l} \because P^{\prime}(t)=(0.12 t+3)^{\frac{3}{2}} \\ \therefore P(t)=\int(0.12 t+3)^{\frac{3}{2}} d t \end{array} \] By using the substitution $u=0.12 t+3 \Rightarrow d u=0.12 d t$ \[ P(t)=\int(0.12 t+3)^{\frac{3}{2}} d t=\frac{1}{0.12} \int u^{\frac{3}{2}} d u \] \[ \begin{array}{l} =\frac{2}{.12 \times 5} u^{\frac{5}{2}}+C \\ P(t)=\frac{1}{0.3}(0.12 t+3)^{\frac{5}{2}}+C \end{array} \] $P(0)=\frac{1}{0.3}(0.12 t(0)+3)^{\frac{5}{2}}+C=100$ \[ \Rightarrow 100=30 \sqrt{3}+C \Rightarrow[C=-30 \sqrt{3}+100 \approx 48.038 \] So \[ P(t)=\frac{1}{0.3}(0.12 t+3)^{\frac{5}{2}}+48.038 \] At the beginning of the year $2015,$ $t=5$ (in years) $P(5)=48.038+\frac{1}{0.3}(0.12(5)+3)^{\frac{5}{2}}=130$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.