Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 3 - The Derivative In Graphing And Applications - 3.2 Analysis Of Functions II: Relative Extrema; Graphing Polynomials - Exercises Set 3.2 - Page 205: 9

Answer

$$x = - 3{\text{ and }}x = 1$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{{x + 1}}{{{x^2} + 3}} \cr & {\text{Calculate the derivative of the function using the quotient rule}} \cr & f'\left( x \right) = \frac{{\left( {{x^2} + 3} \right)\frac{d}{{dx}}\left[ {x + 1} \right] - \left( {x + 1} \right)\frac{d}{{dx}}\left[ {{x^2} + 3} \right]}}{{{{\left( {{x^2} + 3} \right)}^2}}} \cr & f'\left( x \right) = \frac{{\left( {{x^2} + 3} \right)\left( 1 \right) - \left( {x + 1} \right)\left( {2x} \right)}}{{{{\left( {{x^2} + 3} \right)}^2}}} \cr & f'\left( x \right) = \frac{{{x^2} + 3 - 2{x^2} - 2x}}{{{{\left( {{x^2} + 3} \right)}^2}}} \cr & f'\left( x \right) = \frac{{ - {x^2} - 2x + 3}}{{{{\left( {{x^2} + 3} \right)}^2}}} \cr & {\text{Set }}f'\left( x \right) = 0 \cr & \frac{{ - {x^2} - 2x + 3}}{{{{\left( {{x^2} + 3} \right)}^2}}} = 0 \cr & - {x^2} - 2x + 3 = 0 \cr & {x^2} + 2x - 3 = 0 \cr & {\text{Factoring}} \cr & \left( {x + 3} \right)\left( {x - 1} \right) = 0 \cr & {x_1} = - 3,{\text{ }}{x_2} = 1 \cr & {\text{Therefore, the stationary points are:}} \cr & x = - 3{\text{ and }}x = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.