Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 3 - The Derivative In Graphing And Applications - 3.2 Analysis Of Functions II: Relative Extrema; Graphing Polynomials - Exercises Set 3.2 - Page 205: 13

Answer

Stationary points $x= \frac{\pi}{2}(1+2 k)$ where $k \in \mathbb{Z}$ Critical Points $\mathrm{x}=k \pi$ and $x=\frac{\pi}{2}(1+2 k) $ where $k \in \mathbb{Z}$

Work Step by Step

Given $|\sin x|=f(x)$ When $x \in(\pi, 2 \pi) ; -\sin x=f(x)$ When $x \in(0, \pi) ;\sin x= f(x)$ Let $\sin x=f_{1}(x)$ $\cos x=f_{1}^{\prime}(x)$ $f_{2}(x)=-\sin x$ $f_{2}^{\prime}(x)=-\cos x$ Thus in $(0, \pi), \cos x=0$ at $\frac{\pi}{2}$ $\operatorname{In} (\pi, 2 \pi),-\cos x=0$ at $\frac{3 \pi}{2}$ When we combine these results and generalize for all the values of x, we have that the and stationary points of the function are $(1+2 k) \frac{\pi}{2}=x$ where $k \in \mathbb{Z}$ The critical points also include the value of $x$ where the function is not differentiable. And then $k \pi=\mathrm{x}$ where $k \in \mathbb{Z}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.