Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.7 Implicit Differentiation - Exercises Set 2.7 - Page 166: 11

Answer

$y' = \frac{1}{6xy\tan^2(xy^2 + y) \sec^2(xy^2 + y) + 3\tan^2(xy^2 + y) \sec^2(xy^2 + y)} - \frac{3y^2}{6xy + 3} $

Work Step by Step

Differentiate both side with respect to $x$: $\frac{d}{dx}(\tan^3 (xy^2 + y) ) = \frac{d}{dx}(x)$ Remembering that the notation $\tan^3(x)$ is equivalent to writing $(\tan x)^3$, we can differentiate the right side via two applications of the Chain Rule. $3\tan^2(xy^2 + y) \times \sec^2(xy^2 + y) \times (x(2yy') + y^2 + y') = 1$ $3\tan^2(xy^2 + y) \sec^2(xy^2 + y) (2xyy' + y^2 + y') = 1$ Distributing on the left hand side gives: $6xyy'\tan^2(xy^2 + y) \sec^2(xy^2 + y) + 3y^2\tan^2(xy^2 + y) \sec^2(xy^2 + y) + 3y'\tan^2(xy^2 + y) \sec^2(xy^2 + y) = 1$ Now, we isolate the terms involving $y'$, and solve for $y'$: $6xyy'\tan^2(xy^2 + y) \sec^2(xy^2 + y) + 3y'\tan^2(xy^2 + y) \sec^2(xy^2 + y) = 1 -3y^2\tan^2(xy^2 + y) \sec^2(xy^2 + y)$ $y'\big(6xy\tan^2(xy^2 + y) \sec^2(xy^2 + y) + 3\tan^2(xy^2 + y) \sec^2(xy^2 + y) \big) = 1 -3y^2\tan^2(xy^2 + y) \sec^2(xy^2 + y)$ $y ' = \frac{1 -3y^2\tan^2(xy^2 + y) \sec^2(xy^2 + y)}{6xy\tan^2(xy^2 + y) \sec^2(xy^2 + y) + 3\tan^2(xy^2 + y) \sec^2(xy^2 + y)}$ $y' = \frac{1}{6xy\tan^2(xy^2 + y) \sec^2(xy^2 + y) + 3\tan^2(xy^2 + y) \sec^2(xy^2 + y)} - \frac{3y^2}{6xy + 3} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.