Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.3 Introduction To Techniques Of Differentiation - Exercises Set 2.3 - Page 142: 77

Answer

$$f'\left( x \right) = 3\left( 3 \right){\left( {3x - 1} \right)^{3 - 1}}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {\left( {3x - 1} \right)^3} \cr & {\text{We need prove that }}f'\left( x \right) = 3\left( 3 \right){\left( {3x - 1} \right)^{3 - 1}} \cr & {\text{Thus}}{\text{,}} \cr & {\text{Expanding the binomial}} \cr & f\left( x \right) = {\left( {3x} \right)^3} - 3{\left( {3{x^2}} \right)^2}\left( 1 \right) + 3\left( {3x} \right){\left( 1 \right)^2} - {\left( 1 \right)^3} \cr & f\left( x \right) = 27{x^3} - 27{x^2} + 9x - 1 \cr & {\text{Differentiate by using the rule }}\frac{d}{{dx}}\left[ {{x^r}} \right] = r{x^{r - 1}} \cr & f'\left( x \right) = 27\left( 2 \right){x^{3 - 1}} - 27\left( 2 \right)x + 9 \cr & f'\left( x \right) = 81{x^2} - 54x + 9 \cr & {\text{Factoring}} \cr & f'\left( x \right) = 9\left( {9{x^2} - 6x + 1} \right) \cr & f'\left( x \right) = 9{\left( {3x - 1} \right)^2} \cr & or \cr & f'\left( x \right) = 3\left( 3 \right){\left( {3x - 1} \right)^{3 - 1}} \cr & {\text{We have verified that for }} \cr & f\left( x \right) = {\left( {3x - 1} \right)^3} \Rightarrow f'\left( x \right) = 3\left( 3 \right){\left( {3x - 1} \right)^{3 - 1}} \cr & f\left( x \right) = {\left( {mx + b} \right)^n}\,\, \Rightarrow \,\,f\left( x \right) = nm{\left( {mx + b} \right)^{n - 1}}\, \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.