Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 15 - Topics In Vector Calculus - 15.2 Line Integrals - Exercises Set 15.2 - Page 1109: 30

Answer

Result: \[ \int (x^2 dx + x y dy + z^2 dz) = \frac{\pi^6}{192}. \]

Work Step by Step

Step 1: The path of integration is given by the parametrized curve: \[ \begin{align*} x &= \sin(t), \\ y &= \cos(t), \\ z &= t^2, \end{align*} \] for \(0 \leq t \leq \frac{\pi}{2}\). Therefore, the path integral: \[ \begin{align*} \int (x^2 dx + x y dy + z^2 dz) &= \int_{0}^{\frac{\pi}{2}} \sin^2(t)\cos(t)dt + \sin(t)\cos(t)(-\sin(t))dt + \frac{t^4}{2}2tdt \\ &= \int_{0}^{\frac{\pi}{2}} 2t^5\cos(t)dt \\ &= [2\frac{t^6}{6}]_0^{\frac{\pi}{2}} \\ &= \frac{1}{3}\left(\frac{\pi^6}{64} - 0\right) \\ &= \frac{\pi^6}{192}. \end{align*} \] Result: \[ \int (x^2 dx + x y dy + z^2 dz) = \frac{\pi^6}{192}. \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.