Answer
True
Work Step by Step
Since \[ \mathbf{F} = f(x,y)\mathbf{i} + g(x,y)\mathbf{j} \] Then \[ \int \mathbf{F} \cdot d\mathbf{r} = \int_C (f(x,y)\mathbf{i} + g(x,y)\mathbf{j}) \cdot (d\mathbf{xi} + d\mathbf{yj}) = \int_C f(x,y)dx + g(x,y)dy \] Result: \[ True \]