Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 15 - Topics In Vector Calculus - 15.2 Line Integrals - Exercises Set 15.2 - Page 1109: 17

Answer

True

Work Step by Step

Since \[ \mathbf{F} = f(x,y)\mathbf{i} + g(x,y)\mathbf{j} \] Then \[ \int \mathbf{F} \cdot d\mathbf{r} = \int_C (f(x,y)\mathbf{i} + g(x,y)\mathbf{j}) \cdot (d\mathbf{xi} + d\mathbf{yj}) = \int_C f(x,y)dx + g(x,y)dy \] Result: \[ True \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.