Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 15 - Topics In Vector Calculus - 15.1 Vector Fields - Exercises Set 15.1 - Page 1093: 26

Answer

0

Work Step by Step

We find: $\nabla\times\textbf{F}=\begin{vmatrix}\textbf{i}&\textbf{j}&\textbf{k}\\\frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\e^{xz}&3xe^{y}&-e^{yz}\end{vmatrix}$ $=(\frac{\partial (-e^{yz})}{\partial y}-\frac{\partial (3xe^{y})}{\partial z})\textbf{i}-(\frac{\partial(-e^{yz})}{\partial x}-\frac{\partial(e^{xz})}{\partial z})\textbf{j}+(\frac{\partial(3xe^{y})}{\partial x}-\frac{\partial(e^{xz})}{\partial y})\textbf{k}$ $=(-ze^{yz}-0)\textbf{i}-(0-xe^{xz})\textbf{j}+(3e^{y}-0)\textbf{k}$ $=-ze^{yz}\textbf{i}+xe^{xz}\textbf{j}+3e^{y}\textbf{k}$ $\nabla\cdot(\nabla\times\textbf{F})=\nabla\cdot\langle-ze^{yz},xe^{xz},3e^{y}\rangle$ $=\frac{\partial}{\partial x}(-ze^{yz})+\frac{\partial}{\partial y}(xe^{xz})+\frac{\partial}{\partial z}(3e^{y})$ $=0+0+0=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.