Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.2 Double Integrals Over Nonrectangular Regions - Exercises Set 14.2 - Page 1015: 3

Answer

$$9$$

Work Step by Step

$$\eqalign{ & \int_0^3 {\int_0^{\sqrt {9 - {y^2}} } y dxdy} \cr & = \int_0^3 {\left[ {\int_0^{\sqrt {9 - {y^2}} } y dx} \right]dy} \cr & {\text{solve the inner integral and treat }}y{\text{ as a constant}} \cr & \int_0^{\sqrt {9 - {y^2}} } y dx = y\int_0^{\sqrt {9 - {y^2}} } {dx} \cr & {\text{using the power rule }} \cr & = y\left( x \right)_0^{\sqrt {9 - {y^2}} } \cr & {\text{evaluating the limits in the variable }}x \cr & = y\left( {\sqrt {9 - {y^2}} - 0} \right) \cr & {\text{simplifying}} \cr & = y\sqrt {9 - {y^2}} \cr & {\text{then}} \cr & \int_0^3 {\left[ {\int_0^{\sqrt {9 - {y^2}} } y dx} \right]dy} = \int_0^3 {y\sqrt {9 - {y^2}} } dy \cr & = - \frac{1}{2}\int_0^3 {{{\left( {9 - {y^2}} \right)}^{1/2}}\left( { - 2y} \right)} dy \cr & {\text{integrating by the power rule}} \cr & = - \frac{1}{2}\left[ {\frac{{{{\left( {9 - {y^2}} \right)}^{3/2}}}}{{3/2}}} \right]_0^3 \cr & = - \frac{1}{3}\left[ {{{\left( {9 - {y^2}} \right)}^{3/2}}} \right]_0^3 \cr & {\text{simplifying}} \cr & = - \frac{1}{3}\left( {{{\left( {9 - {3^2}} \right)}^{3/2}} - {{\left( {9 - {0^2}} \right)}^{3/2}}} \right) \cr & = - \frac{1}{3}\left( {{{\left( 0 \right)}^{3/2}} - {{\left( 9 \right)}^{3/2}}} \right) \cr & = - \frac{1}{3}\left( { - 27} \right) \cr & = 9 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.