Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 14 - Multiple Integrals - 14.2 Double Integrals Over Nonrectangular Regions - Exercises Set 14.2 - Page 1015: 10

Answer

See the explanation

Work Step by Step

The two curves intersect in: $$\sqrt x=x^2$$ $$x^4-x=0$$ $$x(x-1)(x^2+x+1)=0$$ $$x_1=0,x_2=1$$ a) We have: $$\begin{aligned} \int\int_R f(x,y)dA&=\int_0^1\int_{x^2}^{\sqrt x} f(x,y)dydx. \end{aligned}$$ b) $$\begin{aligned} \int\int_R f(x,y)dA&=\int_0^1\int_{y^2}^{\sqrt y} f(x,y)dxdy. \end{aligned}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.