Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 13 - Partial Derivatives - Chapter 13 Review Exercises - Page 997: 6

Answer

(a) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$ (b) f is continuous at (0,0).

Work Step by Step

$$ (a) f(x, y)=\left\{\begin{array}{cl}\frac{x^{4}-y^{4}}{x^{2}-y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{array}\right. $$ $$ \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{2}-y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)}{x^{2}-y^{2}} $$ The function approaches 0 when $(x, y)$ approaches (0,0). \[ 0=\lim _{(x, y) \rightarrow(0,0)} f(x, y) \] (b) We found that: \[ \lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{2}-y^{2}}=\lim _{(x, y) \rightarrow(0,0)} 0=y^{2}+x^{2} \] is defined at (0,0) and $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0=f(0,0)$ F is continuous at (0,0) according to definition $13.2 .3 .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.