Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 12 - Vector-Valued Functions - 12.3 Change Of Parameter; Arc Length - Exercises Set 12.3 - Page 866: 7

Answer

$$L = e - {e^{ - 1}}$$

Work Step by Step

$$\eqalign{ & x = {e^t},\,\,\,\,y = {e^{ - t}},\,\,\,\,z = \sqrt 2 t,\,\,\,\,\,\,\,\,0 \leqslant t \leqslant 1 \cr & \cr & {\text{Calculate the derivatives with respect to }}t{\text{ for }}x\left( t \right),\,\,\,y\left( t \right){\text{ and z}}\left( t \right) \cr & \frac{{dx}}{{dt}} = \frac{d}{{dt}}\left[ {{e^t}} \right] = {e^t} \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {{e^{ - t}}} \right] = - {e^{ - t}} \cr & \frac{{dz}}{{dt}} = \frac{d}{{dt}}\left[ {\sqrt 2 t} \right] = \sqrt 2 \cr & \cr & {\text{Find the arc length using }}L = \int_a^b {\sqrt {{{\left( {\frac{{dx}}{{dt}}} \right)}^2} + {{\left( {\frac{{dy}}{{dt}}} \right)}^2} + {{\left( {\frac{{dz}}{{dt}}} \right)}^2}} } dt \cr & {\text{for the interval }}0 \leqslant t \leqslant 1,\,\,{\text{ }}a = 0{\text{ and }}b = 1.{\text{ Then}}{\text{,}} \cr & L = \int_0^1 {\sqrt {{{\left( {{e^t}} \right)}^2} + {{\left( { - {e^{ - t}}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} } dt \cr & L = \int_0^1 {\sqrt {{e^{2t}} + {e^{ - 2t}} + 2} } dt \cr & {\text{factoring}} \cr & L = \int_0^1 {\sqrt {{{\left( {{e^t} + {e^{ - t}}} \right)}^2}} } dt \cr & L = \int_0^1 {\left( {{e^t} + {e^{ - t}}} \right)} dt \cr & \cr & {\text{Integrate and evaluate}} \cr & L = \left[ {{e^t} - {e^{ - t}}} \right]_0^1 \cr & L = \left[ {{e^1} - {e^{ - 1}}} \right] - \left[ {{e^0} - {e^{ - 0}}} \right] \cr & L = e - {e^{ - 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.