Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 9 - Section 9.1 - Modeling with Differential Equations - 9.1 Exercises - Page 611: 14

Answer

See the explanation.

Work Step by Step

Verify that $y(0)=5$: $y(0)=5e^{2\cdot 0}+0$ $y(0)=5\cdot e^0+0$ $y(0)=5\cdot 1$ $y(0)=5$ (True) Find the derivative of $y$: $\frac{dy}{dx}=\frac{d}{dx}(5e^{2x}+x)$ $\frac{dy}{dx}=5\cdot 2e^{2x}+1$ $\frac{dy}{dx}=10e^{2x}+1$ Show that $y=5e^{2x}+x$ satisfies the differential equation: $\frac{dy}{dx}-2y=1-2x$ (Substitute $\frac{dy}{dx}=10e^{2x}+1$) $10e^{2x}+1-2y=1-2x$ (Substitute $y=5e^{2x}+x$) $10e^{2x}+1-2(5e^{2x}+x)=1-2x$ $10e^{2x}+1-10e^{2x}-2x=1-2x$ $1-2x=1-2x$ $\therefore$ The left-hand side = The right-hand side
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.