Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 9 - Section 9.1 - Modeling with Differential Equations - 9.1 Exercises - Page 611: 12

Answer

$y = \ln x{\text{ is not a solution}}$

Work Step by Step

$$\eqalign{ & y = \ln x,{\text{ }}xy'' - y' = 0 \cr & {\text{Differentiate the given function}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\ln x} \right] \cr & \frac{{dy}}{{dx}} = \frac{1}{x} \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{d}{{dx}}\left[ {\frac{1}{x}} \right] = - \frac{1}{{{x^2}}} \cr & or \cr & y' = \frac{1}{x}{\text{ and }}y'' = - \frac{1}{{{x^2}}} \cr & \cr & {\text{Substitute }}y''{\text{ and }}y'{\text{ into the given differential equation}} \cr & \underbrace {xy'' - y' = 0}_ \downarrow \cr & x\left( { - \frac{1}{{{x^2}}}} \right) - \frac{1}{x} = 0 \cr & - \frac{1}{x} - \frac{1}{x} = 0 \cr & - \frac{2}{x} \ne 0 \cr & {\text{The statement is false}}{\text{, then }}y = \ln x{\text{ is not a solution}} \cr & {\text{of the given differential equation}}{\text{.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.