Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 9 - Section 9.1 - Modeling with Differential Equations - 9.1 Exercises - Page 610: 10

Answer

$y = \sqrt x {\text{ is not a solution}}$

Work Step by Step

$$\eqalign{ & y = \sqrt {1 - {x^2}} ,{\text{ }}yy' - x = 0 \cr & {\text{Differentiate the given function}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\sqrt {1 - {x^2}} } \right] \cr & \frac{{dy}}{{dx}} = \frac{{ - 2x}}{{2\sqrt {1 - {x^2}} }} \cr & \frac{{dy}}{{dx}} = - \frac{x}{{\sqrt {1 - {x^2}} }} \cr & or \cr & y' = - \frac{x}{{\sqrt {1 - {x^2}} }} \cr & \cr & {\text{Substitute }}y{\text{ and }}y'{\text{ into the given differential equation}} \cr & \underbrace {yy' - x = 0}_ \downarrow \cr & \left( {\sqrt {1 - {x^2}} } \right)\left( { - \frac{x}{{\sqrt {1 - {x^2}} }}} \right) - x = 0 \cr & - x - x = 0 \cr & {\text{ }} - 2x \ne 0 \cr & {\text{The statement is false}}{\text{, then }}y = \sqrt {1 - {x^2}} {\text{ is not a solution}} \cr & {\text{of the given differential equation}}{\text{.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.