Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 9 - Review - True-False Quiz - Page 656: 9

Answer

True

Work Step by Step

Solve for $y$: $\frac{dy}{dt}=2y(1-\frac{y}{5})$ (Separate the variables) $\frac{dy}{dt}=\frac{2y(5-y)}{5}$ $\frac{5}{y(5-y)}dy=2dt$ $\frac{(5-y)+y}{y(5-y)}dy=2dt$ $(\frac{1}{y}+\frac{1}{5-y})dy=2dt$ (Integrate) $\int (\frac{1}{y}+\frac{1}{5-y})dy=\int 2dt$ $\ln y-\ln (5-y)=2t+C$ Substitute the initial condition $y(0)=1$: $\ln 1-\ln (5-1)=2\cdot 0+C$ $0-\ln 4=0+C$ $C=-\ln 4$ We have now: $\ln y-\ln (5-y)=2t-\ln 4$ $\ln y-\ln (5-y)=\ln e^{2t}-\ln 4$ $\ln (\frac{y}{5-y})=\ln \frac{e^{2t}}{4}$ $\frac{y}{5-y}=\frac{e^{2t}}{4}$ $\frac{5-y}{y}=\frac{4}{e^{2t}}$ $\frac{5}{y}-1=4e^{-2t}$ Since as $t\to \infty$, $4e^{-2t}\to 0$, it must be $\frac{5}{y}-1\to 0$, or $y\to 5$. Thus, $\lim\limits_{t \to \infty }y=5$ (TRUE).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.