Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 8 - Section 8.3 - Applications to Physics and Engineering. - 8.3 Exercises - Page 585: 26

Answer

$\left( {\overline x ,\overline y } \right) = \left( {\frac{2}{{{e^2} - 1}},\frac{{{e^2} + 1}}{{4e}}} \right)$

Work Step by Step

$$\eqalign{ & {\text{From the given graph}}{\text{, we can estimate the centroid at}} \cr & \left( {0.3,0.5} \right) \cr & \cr & y = {e^x},{\text{ }} - 1 \leqslant x \leqslant 1 \cr & {\text{Let }}f\left( x \right) = {e^x}{\text{ and }}g\left( x \right) = 0 \cr & \cr & {\text{*The mass of the lamina is }} \cr & m = \rho \int_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx \cr & m = \rho \int_{ - 1}^1 {\left( {{e^x} - 0} \right)} dx \cr & m = \rho \int_{ - 1}^1 {{e^x}} dx \cr & m = \rho \left[ {{e^x}} \right]_{ - 1}^1 \cr & m = \rho \left( {e - {e^{ - 1}}} \right) \cr & \cr & *{\text{The moment about the }}x{\text{ - axis is}} \cr & {M_x} = \rho \int_a^b {\left[ {\frac{{f\left( x \right) + g\left( x \right)}}{2}} \right]} \left[ {f\left( x \right) - g\left( x \right)} \right]dx \cr & {M_x} = \rho \int_{ - 1}^1 {\left[ {\frac{{{e^x}}}{2}} \right]} \left[ {{e^x}} \right]dx \cr & {M_x} = \frac{\rho }{2}\int_{ - 1}^1 {{e^{2x}}} dx \cr & {M_x} = \frac{1}{4}\rho \left[ {{e^{2x}}} \right]_{ - 1}^1 \cr & {M_x} = \frac{1}{4}\rho \left( {{e^2} - {e^{ - 2}}} \right) \cr & \cr & *{\text{The moment about the }}y{\text{ - axis is}} \cr & {M_y} = \rho \int_a^b x \left[ {f\left( x \right) - g\left( x \right)} \right]dx \cr & {M_y} = \rho \underbrace {\int_{ - 1}^1 x \left[ {{e^x}} \right]dx}_{{\text{Integrate by parts}}} \cr & {M_y} = \rho \underbrace {\int_{ - 1}^1 x {e^x}dx}_{{\text{Integrate by parts}}} \cr & {M_y} = \rho \left[ {x{e^x} - {e^x}} \right]_{ - 1}^1 \cr & {M_y} = \rho \left[ {e - e} \right] - \rho \left[ { - {e^{ - 1}} - {e^{ - 1}}} \right] \cr & {M_y} = 2{e^{ - 1}}\rho \cr & \cr & *{\text{The coordinates }}\left( {\overline x ,\overline y } \right){\text{ of the centroid are:}} \cr & \overline x = \frac{{{M_y}}}{m} = \frac{{2{e^{ - 1}}\rho }}{{\rho \left( {e - {e^{ - 1}}} \right)}} = \frac{{2e}}{{e\left( {{e^2} - 1} \right)}} = \frac{2}{{{e^2} - 1}} \approx 0.313 \cr & \overline y = \frac{{{M_x}}}{m} = \frac{{\frac{1}{4}\rho \left( {{e^2} - {e^{ - 2}}} \right)}}{{\rho \left( {e - {e^{ - 1}}} \right)}} = \frac{1}{4}\left( {\frac{{\frac{{{e^4} - 1}}{{{e^2}}}}}{{\frac{{{e^2} - 1}}{e}}}} \right) = \frac{{{e^2} + 1}}{{4e}} \approx 0.77 \cr & \left( {\overline x ,\overline y } \right) = \left( {\frac{2}{{{e^2} - 1}},\frac{{{e^2} + 1}}{{4e}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.