Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.6 - Integration Using Tables and Computer Algebra Systems - 7.6 Exercises - Page 527: 6

Answer

$\frac{1}{3}\sqrt {{t^6} - 5} - \frac{{\sqrt 5 }}{3}{\cos ^{ - 1}}\frac{{\sqrt 5 }}{{\left| {{t^3}} \right|}} + C$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sqrt {{t^6} - 5} }}{t}} dt; \cr & {\text{Let }}u = {t^3} \Rightarrow du = 3{t^2}dt,{\text{ }}dt = \frac{{du}}{{3{t^2}}},{\text{ then}} \cr & \int {\frac{{\sqrt {{t^6} - 5} }}{t}} dt = \int {\frac{{\sqrt {{u^2} - 5} }}{t}\left( {\frac{1}{{3{t^2}}}} \right)} du \cr & = \int {\frac{{\sqrt {{u^2} - 5} }}{{3{t^3}}}} du \cr & = \frac{1}{3}\int {\frac{{\sqrt {{u^2} - 5} }}{u}} du \cr & {\text{Using the formula}} \cr & \int {\frac{{\sqrt {{u^2} - {a^2}} }}{u}du = } \sqrt {{u^2} - {a^2}} - a{\cos ^{ - 1}}\frac{a}{{\left| u \right|}} + C \cr & {\text{Therefore}}{\text{,}} \cr & = \frac{1}{3}\int {\frac{{\sqrt {{u^2} - 5} }}{u}} du = \frac{1}{3}\sqrt {{u^2} - {{\left( {\sqrt 5 } \right)}^2}} - \frac{{\sqrt 5 }}{3}{\cos ^{ - 1}}\frac{{\sqrt 5 }}{{\left| u \right|}} + C \cr & {\text{Simplifying}} \cr & = \frac{1}{3}\sqrt {{u^2} - 5} - \frac{{\sqrt 5 }}{3}{\cos ^{ - 1}}\frac{{\sqrt 5 }}{{\left| u \right|}} + C \cr & {\text{Write in terms of }}t,{\text{ }}u = {t^3},{\text{ then}} \cr & = \frac{1}{3}\sqrt {{t^6} - 5} - \frac{{\sqrt 5 }}{3}{\cos ^{ - 1}}\frac{{\sqrt 5 }}{{\left| {{t^3}} \right|}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.