Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.6 - Integration Using Tables and Computer Algebra Systems - 7.6 Exercises - Page 527: 25

Answer

$\frac{1}{8}{e^{2x}}\left( {4{x^3} - 6{x^2} + 6x - 3} \right) + C$

Work Step by Step

$$\eqalign{ & \int {{x^3}{e^{2x}}} dx \cr & \int {{u^n}{e^{au}}du} = \frac{1}{a}{u^n}{e^{au}} - \frac{n}{a}\int {{u^{n - 1}}{e^{au}}du} \cr & \cr & {\text{Let }}u = x,{\text{ }}du = dx,{\text{ }}n = 3{\text{ and }}a = 2,{\text{ we obtain}} \cr & \int {{x^3}{e^{2x}}} dx = \frac{1}{2}{x^3}{e^{2x}} - \frac{3}{2}\int {{x^{3 - 1}}{e^{2x}}dx} \cr & = \frac{1}{2}{x^3}{e^{2x}} - \frac{3}{2}\int {{x^2}{e^{2x}}dx} \cr & \cr & {\text{For }}\int {{x^2}{e^{2x}}dx} {\text{ we have}}{\text{, }} \cr & u = x,{\text{ }}du = dx,{\text{ }}n = 2{\text{ and }}a = 2 \cr & = \frac{1}{2}{x^3}{e^{2x}} - \frac{3}{2}\left( {\frac{1}{2}{x^2}{e^{2x}} - \int {{x^{2 - 1}}{e^{2x}}dx} } \right) \cr & = \frac{1}{2}{x^3}{e^{2x}} - \frac{3}{4}{x^2}{e^{2x}} + \frac{3}{2}\int {x{e^{2x}}dx} \cr & {\text{Therefore: }}\int {u{e^{au}}du} = \frac{1}{{{a^2}}}\left( {au - 1} \right){e^{au}} + C,{\text{ }}a = 2 \cr & = \frac{1}{2}{x^3}{e^{2x}} - \frac{3}{4}{x^2}{e^{2x}} + \frac{3}{{2{{\left( 2 \right)}^2}}}\left( {2x - 1} \right){e^{2x}} + C \cr & = \frac{1}{2}{x^3}{e^{2x}} - \frac{3}{4}{x^2}{e^{2x}} + \frac{3}{8}\left( {2x - 1} \right){e^{2x}} + C \cr & = \frac{1}{2}{x^3}{e^{2x}} - \frac{3}{4}{x^2}{e^{2x}} + \frac{3}{4}x{e^{2x}} - \frac{3}{8}{e^{2x}} + C \cr & {\text{Factoring out }}\frac{1}{8}{e^{2x}} \cr & = \frac{1}{8}{e^{2x}}\left( {4{x^3} - 6{x^2} + 6x - 3} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.