Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.4 - Integration of Rational Functions by Partial Fractions. - 7.4 Exercises - Page 516: 67

Answer

$2 - 4\ln \left( {\frac{3}{2}} \right)$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {\frac{{\sin 2x}}{{2 + \cos x}}} dx \cr & {\text{Use the double angle identity }}\sin 2x = 2\sin x\cos x \cr & = \int_0^{\pi /2} {\frac{{2\sin x\cos x}}{{2 + \cos x}}} dx \cr & {\text{Let }}u = \cos x,{\text{ }}du = - \sin xdx \cr & {\text{The new limits of integration are:}} \cr & x = 0 \to u = 1 \cr & x = \pi /2 \to u = 0 \cr & = - 2\int_1^0 {\frac{u}{{2 + u}}} du \cr & {\text{By the long division}} \cr & = - 2\int_1^0 {\left( {1 - \frac{2}{{2 + u}}} \right)} du \cr & {\text{Integrating}} \cr & = 2\left[ {u - 2\ln \left| {2 + u} \right|} \right]_0^1 \cr & = 2\left[ {1 - 2\ln \left| {2 + 1} \right|} \right] - 2\left[ {0 - 2\ln \left| {2 + 0} \right|} \right] \cr & = 2\left( {1 - 2\ln 3} \right) - 2\left( { - 2\ln 2} \right) \cr & = 2 - 4\ln 3 + 4\ln 2 \cr & = 2 - 4\left( {\ln 3 - \ln 2} \right) \cr & = 2 - 4\ln \left( {\frac{3}{2}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.